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The apparatus here described has proved very efficient, and we are 
able to obtain very satisfactory duplicate results in two combustions of 
the same substance. Practically no trouble is experienced in obtaining 
a constant temperature of the calorimeter system either at the begin­
ning or end of a combustion; in fact, with the room temperature even 5 ° 
higher than that of the calorimeter water, constant readings have been 
obtained. With this calorimeter, the time required for a combustion 
is much less than usual, inasmuch as long preliminary and final periods 
are avoided and the calculation is materially simplified. 
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i. Introduction. 
In order to determine the maximum amount of work which can be 

obtained from a given amount of heat by a fall in temperature, Carnot, 
in 1824, performed an "imaginary experiment," the Carnot Cycle. In 
performing this "experiment" Carnot made use of the simplest and 
most familiar example of a mechanism for obtaining work from heat, 
the cylinder and piston of the steam engine. He realized clearly that 
in order to obtain the desired relation he had only to imagine a mecha­
nism which could operate under the most ideal conditions, one which rep­
resented the limit approached by all actual machines of the same class, 
as the losses due to friction, heat radiation and conduction, incomplete 
external compensation, etc., became indefinitely small. The reversible 
cyclical process thus invented by Carnot and later slightly modified by 
the work of Clapeyron and of Clausius, constitutes to-day the basis for 
the derivation of the mathematical formulation of the Second Law of 
Thermodynamics. Resting upon this law, the whole structure of thermo­
dynamics has since been built up. 

In the process of constructing our systems of thermodynamic chemistry, 
two general methods may be distinguished. The first of these, the ana­
lytic method, starts with Clausius' formulation of the Second Law in terms 
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of entropy. The manner in which the entropy function might be used 
with advantage by the chemist was first illustrated by Horstmann, who 
applied it to many problems in chemical equilibrium. The later advo­
cates of the analytic method, however, have not found it convenient 
to restrict themselves to the entropy function, but have denned and 
made use of a number of other thermodynamic functions. Willard 
Gibbs, in his masterly contributions to thermodynamic chemistry, de­
fined four of these functions, his e, o, % and £ functions; the £ function, 
or the so-called Gibbs thermodynamic potential, being the one most 
commonly employed to-day. The system invented by Gibbs has been 
followed by Duhem, Planck, van der Waals, van Laar, and others, usually 
however receiving some modification at the hands of each investigator. 
Thus Planck, instead of using Gibbs' Zeta function, prefers another poten­
tial which he defines as equal to -£/T, where T is the absolute tempera­
ture; and recently G. N. Lewis has constructed a very simple analytic 
system of thermodynamic chemistry by introducing two new functions, 
the fugacity, 1V, and the activity, c, which are connected with each other 
by the equation, 1F = iRT, and whose relation to Gibbs' Zeta function 
is expressed by the equation £ ^ i?71nvF -f- /('/'). Although here classed 
among the analytic methods, this system owes a large part of its increased 
simplicity to the fact that its fundamental equations are derived by em­
ploying the second general method instead of starting with, the entropy 
function as might have been done. 

The second general method of constructing a system of thermodynamic 
chemistry is the Carnot method, or, as it is usually called to-day, the 
cyclical process method. This has been the favorite method among 
chemists, and to it we owe most of our advances in this branch of chemis­
try, as illustrated by the work of such men as van't Hoff, Ostwald, Ar-
rhenius and Nernst. It is the simplicity of the processes involved in this 
method and the consequent protection against error which constitute 
its great advantages over the more intricate and abstruse, but yet not 
necessarily more rigorous methods based upon the entropy and thermo­
dynamic potential functions. This has been well stated by Mach in his 
comment upon the discoverer of the second law: "Carnot, by whose ideas 
the whole of thermodynamics is ruled to-day, affords us the most 
pleasing picture of a genius who, without apparent exertion and without 
the labored application of intricate and cumbersome scientific methods, 
but solely through the consideration of the simplest processes, is able, 
almost without effort, to perceive the most fundamental truths." 

The cyclical process method of deriving thermodynamic equations as 
applied by many of its advocates has been the subject of considerable 
adverse criticism mainly upon two grounds: (i) As usually carried 
out, the cyclical process consists of a series of steps, usually four, in each 
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of which certain amounts of work and of heat are involved, the desired 
result being obtained by combining properly all the work and heat terms 
of the various steps in the cycle. The complete process is consequently 
rather long in some instances and is regarded by some writers as very 
cumbersome compared with some of the corresponding analytic meth­
ods. (2) In writing down the work and heat terms for the various steps 
of the cycle, it is customary to introduce some assumption such as the 
perfect gas law or one of the laws of dilute solutions, with the result that 
a rigorous, purely thermodynamic equation is not obtained, but only an 
approximate one containing one or more arbitrary assumptions. The 
possibility of introducing these assumptions is the most serious objec­
tion which can be offered to the cyclical process method, as carried out 
at present. So general is this practice, that in the text-books employ­
ing this method one looks almost in vain for exact thermodynamic equa­
tions such as those relating to chemical equilibrium, for example. 

In the following pages a modification of the Carnot method will be de­
scribed which eliminates completely both of these objections: (i) the 
cycle is reduced to a single step and the desired relation can be written 
down simply by inspection; (2) the differential equation so obtained 
will always be entirely rigorous because it is impossible to introduce 
into the process any assumptions except the Second Law of Thermody­
namics. This gain in simplicity and exactness is accomplished by join­
ing together the various pistons of the ordinary cycle so as to form a 
single complete engine which we shall call the Perfect Thermodynamic 
Engine. After describing the construction and operation of this engine, 
its application will be illustrated by using it in order to derive a number 
of the more important relations of thermodynamic chemistry. While 
the treatment of the subject in the following pages must necessarily 
be rather concise, it can, I believe, be followed easily by any chemist 
familiar with the elements of thermodynamics and the calculus. 

2. The Perfect Thermodynamic Engine. 

Figures 1, 2 and 3 illustrate different types of the engine, the essential 
parts of which are the following (see Fig. 1): 

Two reaction chambers (E and E') contain the system under considera­
tion. Each chamber is placed in a reservoir (R and R') of infinite heat 
capacity for the purpose of maintaining a constant temperature within 
the chamber. Each chamber is fitted with a set of cylinders (A, B, D, 
A,' B', D', etc.) which connect with it through suitable semipermeable 
membranes, aa, a'a'. The cylinders are fitted with frictionless pistons 
(A, B, D, A', B' , D', etc.), some of which are semipermeable, others im­
permeable. Each corresponding pair of pistons is connected by a rigid 
piston rod, thus forming a compound piston (AA', BB', DD', etc.). The 
piston rods have zero heat capacities and are non-conductors of heat and 
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electricity, and the two reservoirs, R and R', are otherwise insulated 
from each other so that no irreversible transfer of heat can take place 
between them. During the operation of the engine the following condi­
tions must be fulfilled: (i) The two reservoirs must never differ from 
each other, in temperature, by more than an infinitesimal amount; when 
such a difference exists, the temperature of R will be designated by T 
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and that of R' by T + dT; (2) The pressure difference against the two 
heads of a compound piston must never exceed an infinitesimal amount; 
the pressures exerted against the pistons of E will be designated by p, 
P, etc., those exerted against the pistons of E', by p + dp, P + dP, 
etc. The operation of the engine consists in the movement of the com-
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pound pistons through finite distances, accompanied by corresponding 
processes which take place within the reaction chambers. Other condi­
tions which must be fulfilled during this operation are (3) that each com­
pound piston must always move so as to produce the maximum amount 
of external work, there being applied to it a compensating external pres­
sure substantially equal to the pressure difference on the two piston-
heads ; and (4) that the rates of motion of all the pistons must be so regu­
lated that the equilibrium within the reaction chambers remains undis­
turbed. In other words, the engine must operate reversibly. 

By the Second Law of Thermodynamics, the following two theorems, 
regarding the work produced during the operation of the engine, are 
true: 

Theorem I.—The total work produced during the isothermal operation 
(temperature of R = temperature of R') of the engine is equal to zero. 

Theorem II.—When the engine operates as a heat engine (temperature 
of R = T, that of R' = T + dT), the total work produced is equal to 
Q dTjT, where Q is the heat absorbed from reservoir R'. 

I t should also be noted that the algebraic expression for the work 
produced by any compound piston during the operation of the engine 
will have a positive sign when the motion is from right to left and a nega­
tive sign when the motion is from left to right. Since one complete 
"operation" of the engine, as we shall use the term, is not a complete 
cycle, it will be necessary to demonstrate the truth of these two theorems. 
This will be done in the next section, in which certain other details con­
cerning the construction and operation of the engine will also be de­
scribed. 

3. The Vapor Pressure of a Pure Substance. 
The equilibrium between vapor and liquid (or vapor and solid) in a 

one-component system may be altered: (1) by changing the total pres­
sure on the liquid (or solid) phase at constant temperature; (2) by chang­
ing the temperature of the system while keeping the pressure on the 
liquid (or solid) phase constant; or (3) by changing the temperature of 
the system and at the same time allowing the total pressure on the liquid 
(or solid) phase to vary in such a manner that it is always equal to the 
vapor pressure. We shall make use of the perfect thermodynamic en­
gine in order to determine the separate effects of these different factors 
upon the vapor pressure of a pure liquid. The treatment for the case 
of a pure solid is perfectly analogous. 

The Pressure Coefficient (T = const.).—We shall use the engine shown 
in Fig. i, omitting, however, pistons and cylinders BB'. The arrange­
ment of the engine is as follows: 

Chamber E: Filled with the liquid whose vapor-pressure, acting through 
the membrane aa (permeable to vapor only) against piston A, is p. Total 
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pressure on liquid, acting against piston D, is P. Temperature of R = T. 
Chamber E ' : Exactly as E except that the total pressure on the 

liquid, acting against piston D', is P -f- dP and the vapor-pressure, act­
ing against piston A', is p + dp. 

To operate the engine allow piston AA' to move reversibly toward 
the left until one mol of the vapor in cylinder A condenses through the 
membrane into chamber E and an equal volume v is evaporated from 
chamber E' into cylinder A'. At the same time and at such a rate as 
not to disturb the equilibrium in either chamber, piston DD' moves re­
versibly toward the right through the volume V occupied by one mol 
of the liquid under the pressure P. The work done by piston AA' is 
vdp, and that done by piston DD' is —-VdP. By the Second Law (i. e., 
Theorem I) the total work is equal to zero, which gives us the equation 

vdp — VdP = o (i) 
or 

&P/bP)T=V/v, (2) 
an equation first obtained by Poynting.1 

If the vapor obeys the perfect gas laws, equation (2) assumes the form 

&]nplDP)T=V0{i—aP)/RT (3) 
where V0 is the molecular volume of the liquid under zero pressure and 
a is the mean coefficient of compressibility of the liquid as defined by the 
equation, a — (V0—V) / V0P. The equation can now be integrated. Since 
the right-hand member of equation (2) is necessarily positive, the vapor 
pressure always increases with increase in pressure on the liquid phase. 
The coefficient, (d/>/dP)T, is small for temperatures considerably removed 
from the critical temperature (thus for water at o0, (d£/d .P)7-^2730 = 
3.6 • io"6 mm. per atmosphere) but increases with the temperature and 
becomes equal to 1 at the critical temperature. 

Proof of Theorem I.—We have assumed Theorem I in writing equation 
(1). In order to demonstrate the truth of this theorem for the present 
case, it is only necessary to show that the engine can be restored to its 
original condition without leaving any residual effect in the surroundings. 
Turning, therefore, to our engine after the completion of the operation, 
we notice that as regards the vapor, the final state of the system differs 
from its original state in that we have (in cylinder A') 1 + dx mols of 
vapor occupying the volume v under the pressure p + dp instead of 
having (in cylinder A) 1 mol of vapor occupying the volume v under the 
pressure p. This means that while only one mol of liquid has been pro­
duced in chamber E, 1 + dx mols of liquid have been evaporated from 
chamber E' , dx being obviously expressed by the relation dx = ("Sxj'dp)vrdp. 
But the removal of this dx mol of liquid from chamber E' would, unless 

1 Poynting, Phil. Mag. [5], 12, 32 (1881). 
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compensated in some manner, cause a corresponding change in the 
total pressure in this chamber, because it will be remembered that dur­
ing the operation of the engine, piston-head D' moves toward the right 
simply through the volume V of one mol of liquid under pressure P, 
not through the volume of i -f dx mols of liquid under the pressure 
P + dP. To avoid this pressure change a little device, X (not shown in 
Fig. i, but shown in Fig. ia), acts automatically during the operation of 

£' 

Fig. ia. 

the engine to maintain a constant pressure in chamber E'. This device 
applies the constant pressure P + dP to a little auxiliary piston, it'', 
which, during the operation of the engine, gradually introduces reversi-
bly into chamber E', such an amount, dx' mol, of liquid as suffices to 
maintain the constant pressure P + dP within this chamber. During 
this process (which we need not consider as a part of the "operation" 
of the engine for reasons stated below) the device X gives out the energy 
(P + dP)dV. 
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As soon as the "operation" of the engine has been completed, another 
automatic device (shown in Fig. ia) immediately acts to restore the sys­
tem to its original condition. This device is the little compound piston 
ss'. The head s' rests against a slider which separates it from cylinder 
A' and which at the conclusion of the "operation" of the engine slides 
back so that the vapor pressure p ± dp acts against the piston head s'. 
Below the piston head s is contained dx mol of vapor at the pressure 
p separated from cylinder D by a semipermeable membrane and by an 
impermeable slider which on sliding back puts the dx mol of vapor 
into communication with the liquid in cylinder D. with which it is in 
equilibrium. The action of this device is as follows: When the "opera­
tion" of the engine has been completed the one mol of liquid in cylinder 
D and the i + dx mols of vapor in cylinder A' are automatically cut off 
from the rest of the engine (as shown in Fig. ia), the little sliders at s 
and s' move back and piston ss' moves downward drawing dx mol of 
vapor out of cylinder A' (the pressure consequently dropping to />) and 
condensing it as liquid into the one mol of liquid in cylinder D, whose 
pressure thereby is raised to P + dP. At the same time2 the little piston, 
Tt, which is attached to the device X moves downward through the vol­
ume dV. The system is now in its original condition, i. e., we have i 
mol of vapor under the pressure p and i -f- dx' mols of liquid under the 
pressure P + dP, which was the condition of the system before the opera­
tion of the engine. 

Let us consider the work produced by the action of these various auto­
matic devices which serve to restore the system to its original condition. 
The piston ss' moves through the volume dv under the pressure dp and 
therefore performs the work dp dv, which is a differential of the second 
order and consequently negligible. During the movement of the little 
piston n the device X takes up the energy (P -f dP'jdV. But this is 
the same amount of energy which it gave out previously to piston n'. 
The operation of the device X, therefore, involves no work. The total 
work involved in restoring the system to its original condition, after 
an "operation" of the engine, is therefore made up of differentials of a 
higher order than the first and is consequently entirely negligible in 
comparison with the work performed during the "operation" itself. 
Although we have shown this to be true only for the simple case just con­
sidered, it is clear that it must also be true for any engine of this type, 
in which the intensity factor of some form of energy is different in the 
two chambers because of a difference dP in the total pressures on the 
chambers, and whose operation consists in removing one or more sub­
stances from one chamber and forcing them into the other by means of 

2 Strictly speaking, the movement of piston re should not begin until such a portion 
of the dx mol has been forced into D, as suffices to raise its pressure to P — dP. 
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compound pistons moving in a manner analogous to the simple case just 
considered. Theorem I is therefore true. 

The Temperature Coefficient (P = const.).—Let us now consider the 
effect of temperature changes upon the vapor pressure of a liquid which 
is under constant external pressure P, such changes as would occur for 
example on heating the liquid in an open vessel exposed to the atmos­
pheric pressure. As in the previous case, we will make use of the engine 
shown in Fig. i, omitting cylinder BB'. The arrangement is as folllows: 

Chamber E : Filled with the liquid whose vapor pressure acting through 
the semipermeable (i. e., only to the vapor) membrane against piston 
A is p. Total pressure on liquid, acting against piston D, is P. Tempera­
ture of R = T. 

Chamber E ' : Exactly as E except that the temperature of R' is T + 
dT and the vapor pressure, acting against piston A', is p + dp. 

The operation of the engine is the same as in the preceding case. Pis­
ton AA' moves reversibly toward the left under the pressure dp, until 
i mol of the vapor in cylinder A is condensed into E and an equal vol­
ume evaporated from E' into cylinder A'. Piston DD' moves toward 
the right, under zero pressure, through the volume V occupied by one 
mol of the liquid, in E. The work done by piston AA' is vdp, that done 
by piston DD' is zero. We have, therefore, by the Second Taw (i. e., 
Theorem II), 

vdp=LpdT/T (4) 
or 

0 / . IHT) p^LplvT, (5) 
an equation previously obtained by Lewis.3 

Lp, the heat absorbed from reservoir R', is the molecular heat of vapor­
ization of the liquid under constant pressure. Since this is a positive 
quantity, the vapor pressure always increases with rise in temperature. 
If the vapor behaves as a perfect gas, we can put v = RT/p in equation 
(5), which gives us 

(blnp I ZT) p = Lp/RT.2 (6) 
To integrate, it is only necessary to express Lp as a function of T, 

which can be readily done by means of the thermodynamic relation, 

ZLpIhT = Cf-Cp, (7) 
where cp and Cp are the molecular heat capacities of vapor and liquid 
respectively, under constant pressure.4 

Proof of Theorem II.—Let us now return to our engine and compare 
its final state with its initial state. As regards the vapor we have (in 

8 Proc. Amer. Acad., 37, 53 (1901); Z. physik. Chem., 38, 205 (1901). 
4 Equation 7 also contains the assumption that the vapor behaves as a perfect 

gas. The purely thermodynamic equation for the temperature coefficient of Lp is 
(dLp/b T)p = cp—Cp + Lp/T— (Lp/v) Qv/b T) p. (70) 
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cylinder A') i -f dx mols of vapor occupying the volume v at the tem­
perature T + dT and pressure p + dp instead of having (in cylinder A) 
i mol of vapor at the temperature T and pressure p. dx is defined by 
the equation dx = (bx:bp)vr{dp/dT)pdT -,- (da;/"bT)r pdT, and may, 
in general, be either positive or negative since the second term of 
this expression is essentially negative, i -|~ dx mols of liquid have 
consequently evaporated from chamber E' during the operation and in 
order to prevent a consequent change in pressure in this chamber, the 
automatic device X acts just as in the preceding case to introduce dx 
mol of liquid into E', replacing that which evaporates into cylinder A', 
and thereby performs the work PdV. 

At the completion of the operation of the engine, the i + dx mols of 
vapor are cut off from cylinder A' and brought into reservoir R, where­
upon the temperature returns to T. By means of the piston ss' (Fig. 
ia) dx mol is then removed from it (its pressure thereupon falling to 
p) and condensed into the i mol of liquid which has been cut off from 
chamber E and whose pressure is thereby raised to P + dP. The work 
involved in this operation is that done by piston ss', which is dp dv. 
The one mol of liquid is now brought into reservoir R' (whereupon its 
temperature returns to T + dT) and is connected to the device X, which 
removes dx mol from it, its pressure thereby falling to P. The whole 
system is now in its original condition. The work absorbed by the de­
vice X in this last step is P dV, the same amount which it previously 
gave out. Therefore the restoration of the system to its original con­
dition after the operation of the engine does not leave any residual ef­
fects in the surroundings as far as work is concerned. As regards the 
heat absorbed from reservoir R' during the restoration, it is clear that 
since the temperature change is infinitesimal, the heat absorbed must be 
a differential quantity and consequently negligible in comparison with 
the finite amount of heat Lp absorbed during the operation of the en 
gine. Theorem II is therefore true. 

These two examples suffice to show that the restoration of the system 
to its original condition after the operation of the engine involves no 
work or heat terms which need to be considered. The whole effective 
work of the process is therefore performed entirely by the compound 
pistons of the engine and we may therefore, in the future, confine our 
consideration solely to these pistons and apply Theorems I and II di­
rectly to them. The various automatic devices which have been de­
scribed for restoring the system to its original condition are understood 
to be a part of every engine, but since their action does not involve any 
work it will not be necessary to pay any attention to them in the future. 

The Temperature Coefficient (P = p).—The latent heat of vaporiza 
tion of a liquid is usually determined by condensing (in a calorimeter) 
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the vapor of the boiling liquid. Under these conditions the liquid al­
ways vaporizes, not under constant pressure at all temperatures, but un­
der its own vapor pressure at each temperature. The temperature co­
efficient of the vapor pressure under these conditions can be at once 
written down, by using the engine shown in Fig. i. The arrangement 
is exactly as in the preceding case except that the pressure against piston 
D is p and that against piston D' is p + dp. The operation is the same 
as before and we obtain at once the relation 

•vdp—Vdp=LpdTjT (8) 
or 

QPItT)^ = LJ(V-V)T (9) 
which is the familiar Clausius-Clapeyron equation. 

Lp and Lp, the latent heats of vaporization of a liquid under the pres­
sure P, and under its own vapor pressure, p, respectively, will not differ 
much unless the difference between P and p is large or the difference be­
tween v and V is small. In the case of water, for example, if P = I 
atmosphere, the difference between Lp and Lp could never exceed 0.005 
per cent. L. is the one which is usually determined experimentally, 
but A. W. Smith5 has recently made a very accurate determination of 
Lp by bubbling air through water, the temperature of which was kept 
constant by electrical heating. 

Solid-liquid Equilibrium.—By filling the chambers of the engine with 
a pure solid and the cylinders with the pure liquid in equilibrium with 
it, we can study the effects of temperature and pressure upon such a sys­
tem, in exactly the same way as for the liquid-gas or solid-gas equilib­
rium described above, the equations obtained being identical in form 
with those just derived. 

4. The Homogeneous Physical Mixture. 
In this section we shall make use of the perfect thermodynamic en­

gine in deriving the equations expressing the effects of pressure, composi­
tion and temperature upon the partial vapor pressures and the osmotic 
pressures for any homogeneous physical mixture. Before taking up 
the derivations, however, it will be necessary to define accurately the 
term "osmotic pressure" as we shall use it. 

Consider any homogeneous liquid mixture of n components (A, B, C, 
etc.) under the external pressure P. Let us take any one of the com­
ponents, A for example, in the pure liquid state and subject it to such an 
external pressure PA that its vapor pressure shall be equal to its partial 
vapor pressure from the mixture.' If now the pure liquid A be placed in 
communication with the mixture through a membrane permeable only 
to A, the system will be in equilibrium as respects the passage of A into 

° Phys. Rev., 25, 145 (1907). 
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or out of the mixture. The difference between the pressures PA and P 
is called the "osmotic pressure." For the simplest type of mixture it 
depends only upon the specific volume and compressibility of the pure 
substance A and upon its mol fraction in the mixture, for a given value 
of T and P. I t would seem preferable therefore to speak of this pressure 
difference as the "osmotic pressure ' ' of the substance A, since it is essen­
tially determined by the properties of this substance. Principally on 
account of historical reasons, however, it is customary to speak of this 
pressure difference as the "osmotic pressures" of all the other compo­
nents of the mixture except the substance A. In what follows it is essen­
tial tha t this pressure difference shall be referred directly to the substance 
which is present in the pure liquid state, and we will therefore speak of 
i t as " t h e osmotic pressure referred to A as the solvent" or, briefly, as 
" t h e osmotic pressure referred to A." In any homogeneous (gaseous, 
liquid or solid) mixture, therefore, the osmotic pressure HA referred to any 
constituent, A, is defined by the equation, \\A ~ P — PA, where P is the 
external pressure on the mixture and P A is the external pressure on the pure 
substance A (in the same state of aggregation) when it is in equilibrium with the 
mixture through a membrane permeable only to itself.1'' 

The following treatment, together with the equations obtained, is 
equally applicable to a solid, liquid or gaseous homogeneous, physical 
mixture of any number of components, but in deA-eloping our equations 
we shall find it convenient to fix our at tent ion upon a homogeneous liquid 
mixture of say four components. The composition of the mixture is 
expressed by the equation NA + NB + NM + AT

N = i, where Nx represents 
the mol fraction of any consti tuent X. The mol fraction of any constitu­
ent (A, for example) isdefined by the equation A"A = «A / («A-rHB+MM+MN) , 
where nA, nB, etc., represent the number of mols of the various constit­
uents in any given quant i ty of the mixture. 

The Pressure Coefficient (N, T =• const.).—i. Vapor Pressures: Using 
the engine shown in Fig. 2, the arrangement is as follows (Temperature 
of R = temperature of R ' = T): 

Chamber E : Filled with the liquid mixture under the total pressure 
P applied by means of piston D. The partial vapor pressures of the 
various constituents (each acting through a membrane permeable only 
to its own vapor) are, pA acting against piston A, pB against B, pu against 
M, and pN against N. 

Chamber E ' : Filled with the liquid mixture under the total pressure 
P + dP applied by piston D ' , the part ial vapor pressures being pA + 
dpA acting against piston A', pB + dps against B ' , piz + dpM against 
M ' and />N + dpN against N' . 

0 This definition is essentially the same as that given by A. A. Noyes (Z. physik. 
Chem., 35, 707 (1900)). Its advantages over the more common one will become evi­
dent as we proceed. 
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At the beginning of the operation each of the four vapor pistons is at 
the right-hand end of its stroke, so that piston heads A', B', M', and N' 
are in contact with the semipermeable membranes separating the cylin­
ders from E'. The operation of the engine consists in the simultaneous 
movement of all four vapor pistons toward the left until 1 mol of the 
mixture has been evaporated from E' and condensed into E. At the same 
time piston DD' moves toward the right through the volume (SF) of 
one mol of the liquid mixture. By the Second Law (Theorem I) the 
total work is equal to zero, giving us the equation, 

V A # A + J V J ^ B + ^ M ^ ' M # M + NNvNdpN — (I,V)dP = 0 (10) 
or 

( J V ' A ^ A + NBvB<>pB + NMvMtpM + A V N ^ N / ^ W = (SF) (11) 
which for brevity we shall write in the form 

[(2iVAV£A)/S-P]N,T = (ZF). (12) 
In these equations Vx is the volume of one mol of the substance X 

in the vapor state under the pressure px. 
2. Osmotic Pressures: If the cylinders contain the pure components 

in the liquid state instead of the gaseous state the respective partial pres­
sures are osmotic pressures instead of vapor pressures, and allowing the 
engine to operate as before, we can write down at once the equation 

[ (SivAyA OnA) /SP] N.T = - ( S i V F ) (13) 
in which VA, VB, etc., represent the molecular volumes of the pure sub­
stances A, B, etc., in the liquid state under the pressuresP— IIA, P — 
ITB, etc., respectively.7 

The Composition Coefficient (P, T = const.).—i. Vapor Pressures: 
We shall now proceed to determine the effect of a slight change in the 
composition of a mixture, upon the partial vapor pressures of its con­
stituents. Let us change the mol fraction of constituent A, for exam­
ple, from NA to NA + dAr

A. The arrangement of the engine is exactly 
as in the preceding except that the total pressure acting against D and 
D' is P for both chambers, the dp differences in the partial vapor pres­
sures being due to the fact that the composition of the mixture in cham­
ber E' has been altered by the addition of dNA mols. of A. The opera­
tion of the engine is exactly as above and we have by the Second Law 
(Theorem I), 

' The expression (2NV) is used to represent the volume of one mol of the mix­
ture because this volume may be regarded as equal to the sum of the partial volumes 
of the components as expressed by the equation NAVA + NSVB + NMVM + NNVN = 
INV, in which VA, VB, etc., represent the partial molecular volumes of the respective 
constituents in the mixture. The partial molecular volume of any constituent is 
equal to the increase in the volume of an infinite amount of the mixture when one mol 
of the constituent is added to it. Similar relations may be stated for the quantities 
(2NL) and (2ND) which appear in equations (18) and (19). 
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NAVAdPA + NBVBdpR V Ny1V^Py1 "f A ^ C ^ N = O, ( l ^ 

or 
[(2A>A9/;A )/dAT

A]pr - 0. (T5) 
2. Osmotic Pressures: As in the preceding case, if the cylinders con­

tain the pure liquid components the operation of the engine gives us 
the equation 

~[(SiV A v A dn A ) /dA' A ] P , r = 0. (16) 
The Temperature Coefficient (P, Ar = const.).—i. Vapor Pressures: 

The arrangement and operation of the engine is exactly the same as in 
the preceding case except that the composition is identical in both cham­
bers and the temperature of R — T and that of R' = T -J- dT. The 
Second Law (Theorem II) gives us at once the relation 

^ i + ^ > B # B + ArM^i#M + NsvNdpv = (2NL)dT/T (17) 
or 

[ ( S A V A ^ A ) / ^ P,.V = (ZNL)IT (18) 
where (SA7L) is the latent heat of vaporization of one mol of the mix­
ture at constant pressure and composition.7 

2. Osmotic Pressures: With the pure liquids in the cylinders we ob­
tain the equation 

— [(SNA1/ASnA)/ST]p v = (HND)ZT (19) 
where (HND) is the latent heat of separation of one mol of the mixture 
into its pure liquid components under equilibrium conditions. Its ex­
act meaning is clearly evident from the operation of the engine.7 

Discussion.—The equations which we have just derived involve noth­
ing but the two laws of thermodynamics and they contain all the in­
formation which thermodynamics alone is capable of yielding regarding 
the relations existing among the partial vapor pressures or osmotic pres­
sures for a homogeneous mixture. We shall not, in the present paper, 
discuss these important equations further, although many interesting-
examples of their transformations and applications in special cases pre­
sent themselves. I t will be sufficient to note here that if the vapors be­
have as perfect gases, the vapor pressure equations assume the forms 

l(ZNA-dlnpA)/c>P]NT - (ZNV)/RT, (20) 

l(ENAmpA)fdNx}PX = 0, (21) 
and 

[ ( S A ^ d l n ^ / a T ] ^ - (2NL)ZRT*. (22) 
The equation of Duhem-Margules for the partial vapor pressures of a 

binary mixture is a form of equation (21). I t will also be noticed that 
the equations derived in section (1) for a pure substance are special forms 
of these equations for a one-component system. 

By making the two chambers of our engine infinite in volume and re­
moving only one constituent we can obtain the following equations for 
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the partial vapor pressure or osmotic pressure referred to one constituent 
alone. 

(hpJ*P)N,T=vjvA. (23) o n A / 9 P ) i V T = - F A / y A . (23a) 
^Pj^T)NiP=LjvAT. (24) &nj*T)NiP=—DJVjJ. (24a) 

The absence of an equation for one constituent, corresponding to equa­
tion (15), will be noticed. Thermodynamics is incapable of yielding 
any information concerning the changes in the partial vapor pressure 
(or osmotic pressure) of one constituent of a mixture, with a change in 
the composition of the mixture, other than the information contained 
in equation (15). 

Since VA may be either positive or negative,7 the partial vapor pressure 
of a constituent of a mixture, unlike the vapor pressure of a pure sub­
stance (see page 472), may be in some cases increased and in others decreased 
by increasing the total pressure on the mixture. LA, the partial molecu­
lar heat of vaporization of any constituent, A, is the heat absorbed when 
one mol of A is vaporized reversibly from an infinite amount of the 
mixture. If the vapor obeys the perfect gas laws equation (24) be­
comes 

( b l n ^ / B T W = (^~DA)/RT\ (25) 
where LA is the molecular heat of vaporization of the pure liquid A, and 
DA is the heat absorbed when one mol of liquid A is mixed with an in­
finite amount of the mixture. —DA is obviously the ordinary molecular 
heat of dilution of a solution with one of its components, A. The equa­
tion now contains only quantities which can be readily measured. 

In a similar way equation (24a) for the temperature coefficient of os­
motic pressure can be put in a more practical form if we replace DA by 
(DA — nA l^A) , which is equal to it by the First Law. If we choose to re­
fer the heat of dilution to unit volume of solvent instead of to one mol 
we have q = —DJV A and equation (24a) assumes the familiar form 
of the Helmholtz equation 

(mjhT)pN = (U~-q)/T. (26) 
5. Chemical Equilibrium: A. Homogeneous. 

Let us consider any chemical equilibrium, expressed by the equation 
aA + 6B + . . . . ^ : »M + wN + . . . . (27) 

in which a mols of the substance A react with b mols of the substance 
B, etc., to form m mols of the substance M and n mols of the substance 
N, etc. The substances entering into the reaction are in equilibrium 
with each other in any homogeneous phase and there may or may not 
also be present in the phase one or more other substances which do not 
take part in the reaction: a solvent or an indifferent gas, for example. 
As in the preceding section the composition of the phase is represented 
by the equation 
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^ A + -^B + ' • • • + ^ M + ^ N + • • • • + ^ l + ^ 3 + • ' * • = I (28) 

where ./Vx is the mol fraction of the constituent X, numercial subscripts 
referring to substances which do not take part in the chemical equilib­
rium. 

Our problem is to determine in what direction and to what extent 
the chemical equilibrium is displaced by, (1) increasing the concentra­
tion (i. e., the mol fraction) of one of the reacting substances, (2) increas­
ing the total pressure on the phase, and (3) increasing the temperature 
of the system. In deriving our fundamental equations, it will be simpler 
to fix our attention chiefly upon some particular phase, and we shall 
choose a gaseous phase, which, in addition to the reacting substances, 
contains also an indifferent gas which we shall call constituent, 1. It 
would correspond to a solvent if we were dealing with a liquid or solid 
solution. 

[The treatment of chemical equilibrium in a homogeneous liquid or 
solid phase is quite analogous, it being simply necessary to replace par­
tial gas pressure px by the osmotic pressure 1Ix. It will be sufficient, 
therefore, in the following treatment, to indicate parenthetically (in brack­
ets) the necessary changes in the process and the corresponding equations 
for these cases. ] 

Arrangement of the Engine.—We shall make use of the engine shown 
in Fig. 2. The arrangement is as follows: 

Chamber E: Filled with the gaseous mixture as described above, 
the composition of the mixture being represented by the equation 

^ A + NB + • ' • + NM. + NN + • • ' • + Nl = I-

The substances A, B. ., M, N. . are in chemical equilibrium as expressed 
by the equation 

aA + bB + . . . 7-»* wM + wN + 
The partial pressures of the substances taking part in the equilibrium 
act through suitable semipermeable membranes against the pistons as 
follows: pK against piston A, pB against piston B, pM against piston M 
and pN against piston N. The total pressure on the system is applied by 
means of piston D. 

Chamber E ' : Analogous in every respect to chamber E except that 
the equilibrium has been slightly displaced by some cause so that the 
partial pressures from this chamber have become pA + dpA against piston 
A', ps + dpB against piston B', etc. 

[For a liquid (or solid) phase in the chamber, the cylinders are filled 
with the pure substances A, B, M, N, etc., in the liquid (or solid) state 
and the pressures on the pistons are osmotic pressures, IIA and I"IA + 
dUA, I1B and IIB + dUB, etc.] 

The operation of the engine consists in the movement of pistons AA' 
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and BB' toward the left until a mols of A and b mols of B have been 
forced into E and drawn out of E ' ; and the simultaneous movement of 
pistons MM' and NN' toward the right, removing m mols of M and n 
mols of N from E (as fast as they are formed by the reaction of A and B 

Fig. 2. 

which are being introduced by pistons AA' and BB') and forcing them 
into E' (as fast as they are required to replace, by reaction, the A and B 
which are being removed by pistons AA' and BB'). The equilibrium is 
not disturbed in either chamber. The work done by pistons AA', BB', 
MM' and NN' is 

avAdpA + bvBdpB + ... — mvudpu — nvNdp^ — . . . . , 
or more briefly, 
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S± avAdpA [for liquid or solid, S^ aVAdYlA]. 
The ± sign indicates that terms relating to the reacting substances are 
to be taken with a positive sign and those relating to the products of the 
reaction with a negative sign. 

By the Second Law (Theorems I and II), this work is equal to (i) zero, 
or (2) QdT/T according as the displacement of the equilibrium in cham­
ber E' is brought about by changing (1) the composition, or the total 
pressure, or (2) the temperature. We shall consider each effect sepa­
rately. 

The Composition and Pressure Coefficients (P, T = const, or N, T = 
const).—Keep the total pressure and the temperature in E and E' the 
same and displace the equilibrium in E' by changing the mol fraction 
of (say) A from NA to NA + dNA; or, keep the composition and tempera­
ture the same in both E and E' and change the total pressure on E' from 
P to P + dP by means of piston D'. In either case the operation of the 
engine gives us at once the equation 

avAdpA + bvBdpB + - - mv^dpM — nvNdpN — . . . = 0 (29) 

or 

dP ) N,T ' 1—V SP 

swAanA\ • 
— S N ~ — i - - = 0 ( 3 ° a ) A ' PJ H M H P . T - - ° (30) 

• V OP I N T N. T 

These equations contain everything which thermodynamics alone is 
capable of teaching us concerning a chemical equilibrium at constant 
temperature. To proceed further it is necessary to know the functional 
relation between p and v for the system under consideration. To illus­
trate, let us assume that this relation is pv = RT, i. e., the perfect gas 
law. Putting yx = RT'//Jx for each substance in equation (30), the 
equation becomes 

RTdln-^-3— = 0. (32) 
Pu-PN- • 

This equation can obviously only be true if 

— — - = const. = Kp, (33) 
F M • P N • • 

which is the mathematical formulation of the law of chemical mass ac­
tion in terms of partial pressures. It can be expressed in terms of mol 
fractions or volume concentrations by substituting px = NxP or p x = 
CxRT, respectively, in equation (33), giving 

N* . Ni *A • i Y B 

' M 

and 

Nm m ~KpP>*(- KN for constant P), (34) 
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%%T = Kp(RT)*" = Kc, (35) 

where Ax—the change in the number of mols which results from the 
reaction—is written for (w + n + . . . . — a — b — . . .) . 

I t is evident, from the preceding, that the Law of Mass Action for a 
gaseous phase (i. e., equation (33)) expresses the condition of chemical 
equilibrium only for a system in which the substances taking part in the 
reaction are all perfect gases. And of the perfect gas laws only those of 
Boyle and Avogadro are involved. It is not essential that the law of 
Gay-Lussac (i. e., p = kT) be obeyed. To state, therefore, that any 
chemical equilibrium (in a gaseous phase or dilute solution) does not obey 
the Mass Action Law is simply to state that the pressure (gaseous or os­
motic) of at least one of the substances concerned in the equilibrium 
does not obey the law of Boyle-Avogadro. Notwithstanding the fact 
that this law has been shown to be both a necessary and sufficient condi­
tion for the validity of the Law of Mass Action, the belief seems still to be 
held in some quarters that the latter law may after all have a wider and 
more general application. T. B. Robertson, for example, in a recent 
paper,8 considers the conditions for chemical equilibrium in a system 
in which the equation p(v —• d) = RT is obeyed instead of the perfect 
gas law. He concludes that such a system must also obey the Law of Mass 
Action.9 This conclusion must be regarded as erroneous. The equa­
tion p(v—d)=RT does not lead to the Mass Action Law but_to quite a 
different expression, as will be evident by substituting v = RT/p + d, 
in equation (30) and integrating. This gives the relation 

RTlnpi. p». . /PZ . £» • • = const. — H±apAdA (36) 
in which the last term represents the series 

apAdA + bpBdE + ...— mpudM — npNdN — ... 
Similarly for each equation of state there is a corresponding law of chem­
ical equilibrium but the Law of Mass Action belongs only to systems obey­
ing the Boyle-Avogadro law. 

The Temperature Coefficient (P, N = const.).—Keep the composition 
and total pressure the same in E and E' and displace the equilibrium in 
E' by changing the temperature of R' from T to T + dT. The opera­
tion of the engine gives us the equation 

avAdpA + bvBdpB + . . . — mvKdpM — nvNdpy — . . . = QdT/T (37) 
or 

8 / . Physic. Chem., 10, 522 (1907). 
9 This conclusion seems to have been accepted by other investigators, apparently 

without question. I t is quoted by the Earl of Berkeley (Proc. Roy. Soc, A7Q., 131 (1907)) 
in support of certain conclusions regarding the application of van der Waals' equation 
to solutions and it is even beginning to appear in the text-books. See, for example, 
the last edition of Morgan's "Elements of Physical Chemistry," p. 239. 
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( ? ™ . a, w - (? :^" f ) - o. ,,,,,J 
\ 0 7 'P,[N=.fiT)) I _\ Ol J P,\N-^f(T)] 1 

where Qp is the heat evolved by the reaction when it proceeds from left to 
right according to equation (27) and does the maximum external work. 
If we assume the perfect gas law this equation becomes 

01ntf,/dT)P i ,v = QP/RT\ (39) 
where Kp is defined by equation (33). We may substitute, Kp = 
Kc(RT)lx (equation (35)) and Qp = U — LxRT (by the first law of 
thermodynamics) and obtain the familiar equation of van't Hoff, 

dlnKJdT = U/RT2, (40) 
where Kc is denned by equation (35) and U, the change in total energy, 
is the heat evolved when the reaction takes place (from left to right) 
without external work.10 

6. Chemical Equilibrium. B. Heterogeneous. 
The Composition Coefficient (P, T = const.).—The arrangement and 

operation of the engine for this case are in general exactly the same as 
for the corresponding case of homogeneous equilibrium, except that 

10 General Equations.—The results just obtained for the effects of composition, 
pressure and temperature can, if desired, be expressed in a single general equation. 
For example, suppose we wish to find a general equation by means of which iCN can be 
calculated for a given gaseous mixture at any temperature or pressure. We have the 
general expression 

dinKs = (31ni£N/3P)TdP + (ain.KN/c-7')p<m (41) 
From equation (34), by taking the logarithm of both sides and differentiating, we ob­
tain 

(3inK A v 'SP) r = Ax/P. (42) 
From equations (34) and (39) we obtain 

(ainK-Av'3T)P = Q>lnKp/<ST)P = Qp/RV. (43) 
But bv the first law of thermodynamics, 

Qp/RT2 = U + AxRT/RT* = U/RT' + Ax/T (44) 
and 

U = U0 +Z(ahA)T. (45) 
Consequently, 

(ZlnKN/*T)p = U0/RT' + l(ahK)/RT + Ax/T (46) 
and combining with (41) and (42) we obtain finally, 

d\nKN = AxdP/P + U0dT/RT2 + [2(a.hA) + RAx]dT/RT (47) 
which, on integration, yields 

(Z (ah 0 + RAx) U0 

\nKw = In/ + AxInP + - - - - - L 1W — — (48) 
N R RT ^ ' 

or, written in the exponential form 
_ U0 

KN = IT1P^e Rf (49) 
in which / is the integration constant and b is written for (i"(a/?A) + RAx)ZR. This 
is Gibbs' formula for gas dissociation, and has, I believe, heretofore never been de­
rived except by the use of Gibbs' thermodynamic potential. Van Laar even goes so 
far as to state (Sechs Vortrdge, p. 69) that it is not possible to derive it in any other 
way. 
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substances present in a second state of aggregation are not removed 
from one chamber and forced into the other during the operation of the 
engine, but are simply allowed to vaporize (or dissolve) in one chamber 
and condense (or precipitate) in the other as the reaction progresses. 
This, of course, necessitates the movement of the pressure piston, DD', 
through the corresponding volume change; but since it moves under 
zero pressure it does no work, and the differential equation obtained 
is therefore identical with the one for homogeneous equilibrium with 
the omission of all terms referring to substances present in a second state 
of aggregation. These omissions may be indicated by placing the sym­
bol (?) inside the summation sign. Thus in place of equation (30) [and 
(30a) ] we have: 

( 2 e a ^ A ) =0 (50) r(S ( | )^n A x 1 (soa) 
V SiVA 'p,T LV ZNA 'p,T J 
It is customary to derive the laws of heterogeneous chemical equilib­

rium, from the corresponding laws of homogeneous equilibrium—the Mass 
Action Law for example—by assuming that the pressures or concentra­
tions of substances present in a second state of aggregation are constants. 
While this gives the correct result and is a convenient aid to the memory, 
as a general method of proof it must be condemned, because the assump­
tion upon which it is based is not only unnecessary but is apt to be mis­
leading. This can be illustrated by considering a specific example. 

The law of the constancy of the solubility product for difficultly solu­
ble substances which dissociate in solution is almost invariably derived 
by first assuming the Mass Action Law and then assuming that the concen­
tration of the undissociated portion is a constant so long as an excess 
of the solid phase is present. Now in the case of aqueous solutions of 
strong electrolytes, Stieglitz has recently called attention to the fact 
that since the Mass Action Law does not hold even approximately for 
these substances, any derivation based upon this law cannot be applied 
to their solutions. He therefore concludes11 that there is no theoretical 
basis for the Solubility Product Law in the case of strong electrolytes. 

This criticism of the method of derivation in the case of strong elec­
trolytes is quite justified, but the conclusion which is drawn regarding 
the lack of theoretical foundation for the law in these cases is unjustified. 
In order to derive the Solubility Product Law it is not only unnecesssary 
to assume the Mass Action Law but it is not even necessary to know what 

11 Stieglitz, T H I S JOURNAL, 30, 954 (1908). After recalculating Arrhenius' solu­
bility data and finding good agreement with the Solubility Product Law, he concludes: 
" In view of these facts and also in view of the results of the complete calculation of 
Arrhenius' data on the solubility of the silver salts, which removed the last theoretical 
foundation for the solubility product constant, we may well consider it for the pres­
ent to be an approximate empirical principle." 
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the law is which regulates the equilibrium between the dissociated 
and undissociated portions of the dissolved solute. This can be made 
clear by applying the engine as indicated above (p. 487) to a saturated 
solution of a solute, BC for example, which dissociates in solution ac­
cording to the equation 

BC ^ B + C. 
We obtain at once the equation12 

VBdUB + VcdUc = 0 (51) 
where dU in both cases may be either (9ll/9Ar

B)dAr
B or ($H/bNc)dNc. 

If A and B are "normal solutes" and the solution is sufficiently dilute 
it can be readily shown that equation (51) takes the form 

CB- CC = const. = O 0 S 0 ) 2 (53) 
12 If the operation is carried out in the manner described in the preceding sec­

tions, the cylinders of the engine will contain pure liquid B (resp. C) and ^B (resp. ~ c ) 
will denote the difference in pressure upon the solution and the pure liquid B (resp. C) 
which is necessary to establish equilibrium; or as we have called it (see p. 478), " the 
osmotic pressure referred to B (resp. C) as the solvent." In case B and C happen to 
be ions, some difficulty will doubtless arise in the minds of some readers as to the valid­
ity of a process which makes use of a cylinder filled with pure liquid ion. If so, the 
arrangement of the engine can be easily changed so that the cylinders shall contain 
solutions of the ions separated from the chambers by membranes permeable only to 
the ion in question. The pistons then would be permeable only to the solvent and 
the osmotic pressure {r.B' resp. - c ' ) would be the ordinary osmotic pressure of the solute, 
in the present instance an ion. Thus, looking at Fig. 3 a moment, the movement of 
piston BB' toward the left would necessitate the flow of pure solvent toward the right 
through piston B ' into cylinder B ' where it would dilute the solution of B-ion con­
tained in this cylinder. But this solution would then no longer be in equilibrium 
with the solution in chamber E ' and the ion B + would pass from E' through the semi­
permeable membrane into cylinder B' until the equilibrium was restored. The mo­
tion of piston BB' toward the left would therefore result in drawing B+-ion out of cham­
ber E ' and forcing it into Chamber E, just as in the general case where the cylinders 
are filled with the pure liquids. Piston CC would do the same for C-ion, so that we 
would obtain the equation 

V B - ^ ' B - + Vc'dn'z' = 0, (52) 
which is identical in form with equation (51) above and for dilute solutions leads to 
the same result when integrated. Thus if the ions are "normal solutes" and the solu­
tion is "sufficiently dilute," we can write for each ion 

it' = CRT, dr.1 = KTdC and V = i / C 
which gives us 

RTd In CB-CC' = 0, 

or CB-. Cc' = const = (a0S0y. (53) 
The exact significance of the term "normal solute" will be treated more fully in a 

future communication, in which a set of equations for solutions will be derived with­
out making any assumption regarding the concentration of the solution. The equa­
tions for "dilute solutions" which are developed in the present paper will there be 
shown to be only special cases of a more general set of equations for solutions of any 
concentration. For the present the term "normal solute" may be understood to re­
fer to any solute "whose osmotic pressure in dilute solution obeys the gas laws." 
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which is the Solubility Product Law. S0 and a0 are, respectively, the 
solubility of BC in the pure solvent and its degree of dissociation in this 
solution. Since the Solubility Product Law is found to hold, at least 
approximately, for solutions of strong electrolytes of the uni-univalent 
type, it is evidence that the ions in these solutions are approximately 
"normal solutes" (i. e., their osmotic pressures are proportional to their 
concentrations in dilute solution), and that the deviations from the Mass 
Action Law for strong electrolytes must be attributed chiefly to the fail­
ure of the Boyle-Avogadro law in the case of the unionized molecules. 
This conclusion has been pointed out recently by A. A. Noyes,13 who 
offers a very suggestive provisional hypothesis to account for the abnormal 
behavior of the unionized molecules in such solutions. 

The Pressure Coefficient (N, T = const.).—In the case of heterogeneous 
equilibrium, when piston DD' applies a pressure P to chamber E and 
P + dP to chamber E', the operation of the engine is accompanied by a 
motion of this piston through the volume change which results from 
the chemical reaction and a work term, AVdP, appears in the equation 
which was absent in the corresponding case of homogeneous equilibrium 
(q. v. p. 484). Otherwise the operation remains the same and the final 
equation obtained is in all other respects identical with the corresponding 
one for homogeneous equilibrium, but with the omission of all terms re­
ferring to substances present in a second state of aggregation. Thus, cor­
responding to equation (31) [and (31a)] for homogeneous equilibrium, 
we obtain in the case of heterogeneous equilibrium the equation 

( 5 0 ! ! ^ 1 ) = AV (54) and (^Cj)aV^ = AV 
^P N.T dP fj.T 

• (54«) 

The exact meaning of AV is clearly evident from the operation of the 
engine. It is equal to the increase in the total reaction volume of all 
substances present in a second state of aggregation, which results when 
the reaction proceeds from left to right in the sense of equation (27). 
This can be illustrated by considering some specific examples. 

Suppose the reaction under consideration is 

aA + 6B 7-»" wM + «N (55) 

in which A and M are gases and B and N solids. Applying equation 
(54) to this case, or better, using the engine directly, we obtain the 
equation 

avAdP/, — mvMdPu = AVdP. (56) 
AV here is obviously equal to the reaction volume of N minus the reac­
tion volume of B. Now the reaction volume of N is wVN, where V N is the 

18 A. A. Noyes, T H I S JOURNAL, 30, 351 (1908). 
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molecular volume of solid N under the pressure P. Similarly the reac­
tion volume of B is bVB, so that AF = n F x — bVly If we assume the 
perfect gas laws for A and M, equation (56) becomes 

RTdlnp%/pi\ = (n Vx — b VB)dP (57) 
or 

(jb\nKp/*F)TtN - (nVN—bVT,)/RT. (58) 

Another example: Let us consider a solid BC in contact with its 
saturated solution in which it exists in a state of partial dissociation, 
the equilibrium between the solid and its dissociation products in solu­
tion being expressed by the equation 

BC ^ B + C. (59) 

How will an increase of pressure affect this equilibrium? Operate the 
engine so that solid BC dissolves in chamber E', under the pressure P + dP 
and its dissociation products are removed osmotically and an equivalent 
amount forced into chamber E, where they at once combine to form solid 
BC under the pressure P. This gives us the equation 

I V n n + V cdII c = AVdP1 (60) 

in which AV is the decrease in volume which results when one 
reaction weight (= one mol in this case) of solid BC dissolves in its satu­
rated solution. If B and C are "normal solutes"12 and the solution is 
dilute it can be shown that equation (60) becomes 

RTd\n(a0Soy = AVdP (61) 
or 

[ 9 I n K S 0 ) V o P W = AVIRT (62) 
in which S0 is the solubility of BC (expressed as mols per 1000 grams of 
solvent) under the pressure P and a0 is its degree of dissociation in the 
saturated solution. This is obviously an equation giving the pressure 
coefficient of the logarithm of the solubility product.19 

The Temperature Coefficient (N, P, — const.).—-From what has been 
said in the preceding portions of this section, it is evident that the opera­
tion of the engine for this case gives us the general equation 

S ( t ) O T A ^ A \ _ QdT 

dT 
T (63). 

S ( 7 .a I / A 0 n A \ QKdT 

^T J Jv1P 
(63a) 

We will reserve until some future time the further discussion of the general 
case, and will consider here a specific example, the temperature coeffi­
cient of the solubility product for an electrolyte. 

18 In case B and C happen to be ions we may modify the operation of the en­
gine as explained in note (12). In this case we shall, liowever, obtain the same final 
equations {i. e., equation (62)). 
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Let us apply the engine directly: We have in both chambers a satura­
ted solution of an electrolyte BC in contact with an excess of the solid. 
Chamber E is at T° and chamber E' at T + dT°. The operation of the 
engine consists in the solution of one mol of solid BC in chamber E', 
accompanied by its simultaneous removal osmotically in the form of 
solutions of B-ion and C-ion by means of pistons B' and C , as described 
in note 12. The reverse process, of course, occurs in chamber E. The 
equation for the operation is (cf. eq. 52): 

VB.dWB. + Vc,dUc/ = QdTjT (64) 

If the ions as "normal solutes" and the solution is "sufficiently dilute" 
we can write for each ion, I I ' = CRT, dW = RTdC + RCdT, and V = 
i IC, 
which gives 

RTdlnCB.Cc + 2RdT = QdTjT, (65) 
or 

RT*dln(a0Soy = (Q- 2RT)dT, (66) 
or 

0In(O0S0)VaT)PjV = U/RT*. (67) 

U, the increase in internal energy, is equal to the heat absorbed when a 
system composed of one mol of solid BC and 1000/2Ct0S0 grams of pure 
solvent, both under the pressure P and at the temperature T, changes, with­
out the production of any work, into a system composed of a solution 
of BC in which the solute exists only in the form of its ions. Such a solu­
tion cannot be obtained in reality but the corresponding heat effect 
can be measured, which is all that is necessary. I t is perhaps worth 
while to consider a numerical example illustrating the use of equation 
(67). 

Let us compare the directly measured value of U with the value calcu­
lated by means of the expression 

2RT2{dlna0/dT + dlnSQ/dT) = U, (68) 

in the case of orthonitrobenzoic acid. The value of U for this acid ob­
tained by calorimetric measurements at 200 is 4040 ± 100 cal.14 The 
value of (dlnS0 JdT)700 has been determined by Noyes and Sammet15 and 
found to be 0.03335. From their conductivity measurements at 15° 
and 25°, we obtain Ce150 = 0.386 and Ct250 = 0.311, whence Alnct/ Â  for 
this temperature interval comes out —0.0216, which we shall take as the 

14 From a determination made in this laboratory by Mr. D. A. Maclnnes. We 
hope to extend this investigation in the near future and will therefore defer the de­
scription of the method until its completion. 

15 Noyes and Sammet, Z. physik. Chem., 43, 529 (1903). 
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value of ((HtIa0IdT)10O- Adding these values we obtain dln(a0SQ)/dT = 
0.0118, which, when multiplied by 2RT2 (i. e., 2 X 1.98 X 293 X 293) 
gives 4020 CaI. as the calculated value of U, which is in good agree­
ment with the directly measured value. 

In interpreting their experimental results, Noyes and Sammet use 
the equation of van't Hoff18 for the temperature coefficient of the total 
concentration of a saturated solution of an ionized solute, namely, 

dlmS/dT = LART2, (69) 
in which i (= 1 + a) is the van't Hoff coefficient. We would have ob­
tained this equation, if in using the engine we had removed osmotically 
from chamber E' not simply one mol of the solute in the form 
of its ions but one mol of the solute in the form of both ions 
and undissociated molecules, in the proportions in which they ex­
ist together in the saturated solution. Then, in order to obtain the 
equation in the above form, we should have had to assume that the un­
dissociated molecules were "normal solutes" as well as the ions. In 
other words, the van't Hoff equation involves an unnecessary number 
of assumptions. It is an equation which can be obtained by combining 
two equations, one involving only the ions (i. e., equation (67)) and an­
other similar one involving only the undissociated molecules. 

The recent work of A. A. Noyes and his associates17 has shown us the 
necessity for differentiating between ions and undissociated molecules 
with regard to their behavior as solutes. There is all the more reason 
for doing this since the assumption that they behave alike in this respect 
is quite unnecessary in the majority of cases. All of our equations for 
solution, which contain the van't Hoff factor i, are derived on the assump­
tion that both ions and undissociated molecules are "normal solutes." 
Consequently, if a given equation is found to be in agreement with the 
results of experiment, it does not necessarily mean that this assumption 
is correct, for agreement might still occur if both the ions and undisso­
ciated molecules deviated, but in opposite directions, from the behavior 
of the normal solute. If the equation is not in agreement with the re­
sults of experiment, it does not tell us whether the disagreement is due 
to the behavior of the ions or the undissociated molecules, or both. And 
yet it is quite possible to decide this question, for in nearly every case 
the equation containing the van't Hoff i can be broken up into two sim­
pler equations, one of which involves only the ions and the other only 
the undissociated molecules. An example of this occurs in the case of 
orthonitrobenzoic acid, described above. Noyes and Sammet found 
that the van't Hoff equation (eq. (69)) was not in agreement with the 
results of their experiments with this acid. We have seen that equa-

18 van't Hoff, Z. physik. Chem., 17, 147, 546 (1895). 
17 Carnegie Inst. Pub., No. 63. 
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tion (67), which involves only the ions, is in good agreement with the 
experimental results. Consequently the deviation from the van't Hoff 
equation must be ascribed, for the most part at any rate, to the abnormal 
behavior of the undissociated portion. Whether it is to be attributed 
to the partial association of the unionized molecules (as Noyes and 
Sammet suggest) or to the presence of two isomeric forms of these mole­
cules is not yet certain.18 

Before leaving this subject attention should be called to the fact that 
we have in equation (67) a very valuable method for studying the be­
havior of ions (apart from the unionized molecules) with respect to the 
Gay-Lussac law for the effect of temperature upon osmotic pressure in 
dilute solutions.18 

7. Electromotive Force. 
The Perfect Thermodynamic Engine is generally applicable to the 

derivation of all types of electromotive force equations which are based 
directly upon the Second Law. In the present paper, however, we shall 
confine the consideration to the electromotive force of concentration 
cells. The type of engine used is shown in Fig. 3. I t differs from the 
preceding forms only by the addition of the parts W and 7717'. W is a 
device which permits the easy passage of ions but which resists any mass 
flow of the solution from one chamber to the other, thus permitting a 
difference of pressure to be maintained in the two chambers, if desired. 
rj and 17' are two reversible electrodes which can be connected with each 
other (through a suitable compensating external E. M. F. to ensure 
operation under equilibrium) by means of the key K. 

Concentration Cells (T, P = const.) —(a) The Nemst Equation.— 
As an example of this case let us consider a simple concentration cell 
with reversible silver electrodes and with silver nitrate as the electrolyte. 
Using the engine shown in Fig. 3, omitting cylinder AA', and with tem­
perature of R and R' = T, and pressure against D and D' = P, the ar­
rangement of the engine is as follows: 

Chamber E: Filled with a solution of silver nitrate of concentration 
C and provided with a reversible silver electrode 77 which has a potential 
E. Cylinder B contains a solution of silver ion which is in equilibrium, 
through the semipermeable membrane, with the silver ion in the chamber. 
Piston B, which is impermeable only to silver ion, is under the "osmotic 
pressure" II'A_.. Cylinder C is arranged similarly with respect to 
TVC -̂ion, the "osmotic pressure" against piston C being H'N0,. 

Chamber E ' : Similar to E except that the solution has concentration 
C + dC, the potential of the electrode 77' is E + dE and the osmotic 

18 We hope to pursue this question further experimentally in this laboratory, 
as well as the general question of the temperature coefficients of the osmotic pressures 
of ions as distinct from the unionized molecules. 
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pressures are U'Ag. + dU'As. against piston B ' and I I N 0 , 3 + dH'S03, against 
piston C . 

To operate the engine, close the key K and allow one equivalent (F) 
of electricity to flow reversibly. The passage of this current is accom-
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Fig- 3-

panied by the electrical transference of na equivalents of electrolyte from 
chamber E ' to chamber E (i. e., from cathode to anode). na is the ordi­
nary or Hittorf transference number of the anion.20 To compensate 

20 In general, both solvent and electrolyte are transferred by the current. For 
the present purpose it is not necessary to differentiate between these two factors but 
only to know the total effect referred to solute alone, and this is expressed by the ordi­
nary Hittorf transference number. An equation involving the "true transference 
number" (see Washburn, THIS JOURNAL, 31, 323 (1909)) can be readily obtained by 
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for this effect and maintain equilibrium, pistons BB' and CC move re-
versibly toward the right removing na mols of each ion from E and forc­
ing them into E'. By the Second Law the total work is equal to zero, or 

FdV = na[ VAg.dU'Ag. + VN0,dUN0^. (70) 

If we assume the ions to be normal solutes and the solution dilute, 
this equation becomes 

cm = (2naRT/F)dlnCAg. (71) 
In order to integrate we need to know na as a function of CA . If 

we assume it to be independent of the concentration we obtain the Nernst 
equation on integrating. 

E - E ' = AE = (2naRT/F) In CAg./CAg. (72) 

If CAg. = aC and a = AJA^ this equation becomes 

E - E ' = AE = (2naRT/F)InA0CIA,C, (73) 
in which A0 indicates the equivalent conductance of the solution at the 
concentration C. 

It should be noticed that this equation contains no assumption regard­
ing the relation which exists between the ions and undissociated molecules 
in the solution. I t requires only that the ions be "normal solutes," the 
behavior of the undissociated molecules in this respect not being in­
volved. Another important characteristic of the equation is the fact 
that it is not influenced by errors in the value of the equivalent conductance 
at infinite dilution. I t offers therefore another method of studying the 
behavior of ions apart from their relation to the undissociated molecules 
(cf. page 489). 

(b) The Helmholtz Equation.—Using the engine shown in Fig. 3 but 
omitting cylinders BB' and CC the arrangement is as follows: 

Chamber E: Filled with a solution of (say) HCl of any concentration 
C and provided with a reversible calomel electrode ~q having the potential 
E. The vapor pressure of HCl from the solution acts through the semi­
permeable membrane against piston A with a pressure p. 

Chamber E ' : The same as E except that the concentration of the solu­
tion is C + dC, the potential of rj' is E + c?E and the vapor pressure 
acting against piston A' is p + dp. 

The operation of the engine is evident and gives us at once the relation 
FdU = nKvdp. (74) 

If the vapor obeys the perfect gas law this becomes 
dE = (n^RT/F)d\np (75) 

which on integration, assuming nK const., gives the Helmholtz equation, 
E - E ' = («Kfl77F)m£/£'. (76) 

introducing into the engine a vapor piston by means of which solvent can be vapor­
ized from one chamber and condensed into the other. 
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nK is here the Hittorf transference number of the cation. Obviously 
an exactly similar equation can be obtained in terms of the partial vapor 
pressures of the solvent from the two solutions. 

These two examples will be sufficient to illustrate the use of the en­
gine in deriving E. M. F. equations. The requisite arrangement and 
operation of the engine for the derivation of pressure or temperature 
equations (e. g., the Gibbs-Helmholtz equation) will be readily under­
stood from the corresponding cases of vapor pressure, chemical equi­
librium, etc., which have been described in the preceding pages. 

8. The Colligative Properties of a Solution. 
The quantities osmotic pressure, vapor-pressure lowermg, freezing-

point lowering, boiling-point raising,21 etc., which lie at the basis of our 
methods of molecular weight determination in solution, have played 
such important roles in the development of the modern theory of solu­
tions, that a clear conception of the thermodynamic relations which con­
nect them with one another is of fundamental importance. In many 
cases, the derivations of these relations which are given in the text-books 
contain the assumption that the solution is dilute and involve one of the 
laws of dilute solutions. Even in an elementary text, the only excuse 
that can be offered for introducing such assumptions is that the deriva­
tion of the exact relation is too complicated for the student to grasp at 
this stage. But even on such grounds, this procedure can scarcely be justi­
fied if it leaves the student with the idea that the relation between osmotic 
pressure and freezing-point lowering, for example, is in any way dependent 
upon the law which connects either of these quantities with the concen­
tration. In the following pages it will be shown that by means of the 
thermodynamic engine the exact relations can be written down at once. 
These relations are, of course, differential equations. The method of 
integration varies with the nature of the solvent and the accuracy with 
which it is possible to measure the various quantities concerned. In 
the present paper the methods of integration will only be indicated briefly 
for some of the simplest cases. 

The type of engine used is shown in Fig. i. Both chambers are filled 
with the solution under investigation. Piston AA' is a "vapor piston," 
that is, as it moves toward the left, for example, it draws the vapor of 
the solvent out of chamber E ' and condenses it into chamber E. Piston 
BB' is an osmotic piston. As it moves toward the left it allows solvent 
to enter chamber E' by passing through the semipermeable head B' , 
while at the same time solvent is removed in a similar manner from 
chamber E, the space behind the two piston heads being filled with pure 

21 Following the suggestion of Ostwald, we shall call these quantities the colliga­
tive properties of the solution. 
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solvent. Piston DD' is the total pressure piston. I t moves to the right 
or left during the operation of the engine whenever a volume change in 
the chambers renders it necessary, but since in the following treatment 
we shall deal always with a solution under constant external pressure 
(that of the atmosphere for example), this piston will move only under 
a pressure difference of zero. Consequently no work is involved in its 
motion and it will not be necessary to consider it at all during the opera­
tion of the engine. 

For the solution we will take any homogeneous liquid mixture of any 
number of constituents, A, B, C, etc. Since the terms solvent and solute 
are perfectly arbitrary for such a solution, let us regard A as the solvent 
and the other constituents as solutes. 

Osmotic Pressure and Vapor Pressure (P, T = const.).—To ask the 
question, How does the vapor pressure of the solvent from any solution 
vary with the osmotic pressure? is equivalent to asking the question,22 How 
does the vapor pressure of the pure liquid solvent vary with the total 
pressure upon it? and this relation has already been derived. I t is 
equation (2) which may be written as follows (since by definition dH = 
—dP): 

0 £ / a n ) P i T - - V/v. (77) 
In order to integrate we need only know v and V as functions of p 

and II, respectively. Assuming the gas laws for the vapor we have v = 
RT/p. If V0 is the molecular volume of the liquid under the pressure 
P (i. e., when II = 0, see p. 478) and a is its coefficient of compressibility 
between P and P - I I (a = (V0 — V ) / V 0 ( P - I I — P)), then V = 
Va{i + a l l ) . Substituting in equation (77) and integrating we have 

RTJdlnp = — V0 J ( i + aU)dn, 
or 

RTlnp ^-V0(U + 1AaII2) + RTlnpo, 

in which the quantity p0 in the integration constant is the vapor pressure 
of the pure solvent under the pressure P and at the temperature T. This 
gives us finally 

n + 72aII2 = _ (RT/V0)\np/Po. (78) 

In many cases the term containing a is negligible and by expanding the 
logarithm term into a series we can obtain a more convenient form for 
ordinary use: 

n-"[(^)+''-(^)'+''-(^) ,+ -] <*> 
The ordinary equation for dilute solutions is obtained by neglecting all 
but the first term in the above series. 

See the definition of osmotic pressure, p. 478. 
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Osmotic Pressure and Freezing-point Lowering (P = const.).—The 
problem may be stated thus: How does the osmotic pressure of a solu­
tion change with the temperature at which the solution is in equilibrium 
with the pure solid solvent? The arrangement of the engine is as fol­
lows : 

Chamber E: Filled with a solution in equilibrium with an excess of 
pure solid solvent and therefore at the temperature of its freezing point, 
TF. The mol fraction of the solvent in the solution is A'"A. The pure 
liquid solvent (in cylinder B) in equilibrium with the solution is under 
the osmotic pressure IT. 

Chamber E ' : Exactly as chamber E except the mol fraction of the 
solvent is JVA + dNA, the freezing point TF + dTF and the osmotic 
pressure II -f dli. 

dH in this instance is given by the expression 

dU. = (m/-dT)N(dTF/*NA)PdNA + OiUim^jdN^ (80) 

To operate the engine allow one mol of solid solvent to melt in chamber 
E ' and remove the resulting liquid osmotically with piston BB'. The 
reverse operation occurs in chamber E'. The work done by piston BB' 
is —VdH. The heat absorbed at the higher temperature (i. e., from 
reservoir R') is the molecular heat of fusion (L F) of the solid solvent, 
under the pressure P, to form liquid solvent under the pressure p— II. 
We have therefore by the Second Law 

-VdYl = LFdTFjTF, (81) 
or 

(Sn/dTF) = — LF/VTF. (82) 
In this equation we can put TF = T0 — AtF, and obtain 

dU = LFd(AtF)/V(T0 — AtF), (83) 
where AtF is the freezing-point lowering in centigrade degrees and T0 is 
the freezing point of the pure solvent on the absolute scale. 

In order to integrate we need only express V and LF as functions of 
AtF. V may be expressed by the equation 

V = V0 + ai\tF + b(AtFy + (84) 
where V0 is the molecular volume when AtF = 0 and n = 0, and a, b, 
etc., are constants whose numerical values can be computed from the 
coefficients of compressibility and thermal expansion of the liquid sol­
vent and from approximate values of IT for different values of AtF up to 
the limit desired. For LF the first law of thermodynamics gives us the 
general relation, 

LF = LF0 + ^CPMF + V»«A£ + 1ZiBAt';.+ . . . (85) 
In this equation LF is the molecular heat of fusion of the pure solvent 
at its freezing point T0, ACp is the attendant decrease in the heat capacity 
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of the system and a, /?, etc., are constants expressing the dependence 
of ACp upon the temperature.23 

Substituting equations (84) and (85) in equation (83) and integrating 
so as to obtain II as a series function in AtF, we obtain the relation 

n - v ^ ^AtF + I2 { ^ ^ ^ j A*F + /3 ^ y2^ 

ACP0(V0-aT0) + a-bT, + 7 ^ \ A,s _, i ; /(V0 - a T , , ) ' 
•)A/i. + V« 

LFV0T0 V0T0 LFJ 'F "\ vor 
ACP0(F0 -aToy (a-bT)(V0-aT) _2l2_a__ 

LFoKK KK LF V0T0
 + 

(V0-aT0)(a-bT0) ACPo(a-bT0) b 72/?\ A < "I , „ , . 
F 2 T 2 ~~ LFV0T0

 + \Kf~~L7 *F\ ( 8 6 } 

0 0 ro OO r O O F 0 -J 

This apparently cumbersome equation becomes quite simple when we 
consider a concrete case, owing to the fact that many of the terms in the 
parentheses are negligible. Let us consider a water solution, for exam­
ple, and suppose AtF to be known with an accuracy of 0.1 per cent. For 
this case equation (86) becomes 

II = 12.o6(A*F— 1.78 . ICT 3 A^- 2.5.1O-8A^) atmospheres. (87) 
This equation can be used for values of AtF as high as 100 ° without in­
troducing an error of more than a few tenths of one per cent.24 

Osmotic Pressure and Boiling-point Raising (P = const.).—The prob­
lem may be stated as follows: How does the osmotic pressure change 
with the temperature at which the partial vapor pressure of the solvent 
from the solution is equal to the external pressure upon the solution? 

The arrangement of the engine is as follows: 
23 In the case of water, for example, we have for its molecular heat capacity a t 

constant pressure, Cp = Cp0 + at + bt2 + . . . . and for ice Cp = Cp + a't + 
b't2 + .. .. Subtracting the first equation from the second and putting 

Cp — Cp <= ACp, a ' — a = a, and b' — 6 = ^, 
we obtain 

ACp = ACp 0 + at + fit1 + ... 
Combining this with the purely thermodynamic equation, 

dLF/dt = —dLF/d( AtF) = — ACp, 
and integrating, we obtain equation (85). 

Strictly speaking, another term should be added to this expression to include 
the heat of compression of the liquid solvent from P to P — II, since the operation of 
the engine produces liquid solvent at the latter pressure. In most cases this heat 
effect will be entirely negligible in comparison with the heat of fusion and this assump­
tion is made in equation (85). 

24 The values of the constants for water are: Lp0 = 59.309 liter atmospheres, 
ACp 0 = 0.363 liter atmosphere per degree, V0 = 0.01801 liter, a = 0.000014 
liter; a, /3, and b are negligible. For examples illustrating the application of equa­
tion (87) see Lewis, T H I S JOURNAL, 30, 671 (1908). 

file:///Kf~~L7
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Chamber E: Filled with a solution under the pressure P at its boil­
ing point,25 T3. The mol fraction of the solvent is Ar

A and its partial 
vapor pressure, acting against piston A, is p ( = P). The pure liquid sol­
vent in cylinder B is under the osmotic pressure II. 

Chamber E ' : Exactly as chamber E except that the mol fraction of 
the solvent is Nx + dNA, the temperature (B. P.) is T3 + dTB and the 
osmotic pressure is II + dH. The vapor pressure is P. 

dH in this instance is given by the expression 

dU = (midT)x^TB/mA)pdNA + (dII/9iVA)T<LVA. (88) 
To operate the engine, vaporize one mol of solvent from chamber E ' 

by means of piston AA' and introduce simultaneously one mol of liquid 
solvent osmotically by means of piston BB'. The reverse process occurs 
in chamber E. The only work involved is that done by piston BB', 
which is VdU.. The heat absorbed at the higher temperature is the molec­
ular heat of vaporization (L) of the pure liquid solvent under the pressure 
p — Il to form vapor at the pressure p. We have therefore by the Second 
Taw, 

VdYL = LdT3IT3, (89) 
or 

On/8T B ) = LI VT3. (90) 
In this equation we can put 

TB = TBo + M3 

and obtain 
dU ^Ld(At3)/V(T3o + At3), (91) 

where At3 is the elevation of the boiling point in centigrade degrees and 
T3 is the boiling point of the pure solvent on the absolute scale. 

The method of integration to be followed for this equation depends 
largely on the nature of the solvent, the equation of state of the vapor 
and the magnitude of T3 as compared with the critical temperature of 
the pure solvent. If the vapor of the solvent obeys the gas laws and T3 

is considerably lower than the critical temperature, we could adopt a 
method of integration identical with that employed for the correspond­
ing freezing point equation and would obtain an integrated expression 
perfectly analogous to equation (86). Consequently it will not be neces­
sary to consider this case in further detail. 

Vapor Pressure and Freezing-point Lowering (P = const.).—The prob­
lem may be stated as follows: How does the vapor pressure of the sol­
vent from a solution vary with the temperature at which the solution is 
in equilibrium with the pure solid solvent? Now the vapor pressure 
from the solution and solid solvent are equal when the two are in equi-

28 Note that the b. p. is here defined as the temperature at which the partial vapor 
pressure of the solvent is equal to the total pressure on the solution. 
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librium, consequently this question is the same as inquiring, How does 
the vapor pressure of the pure solid solvent vary with the temperature? 
and this relation has already been derived. I t is equation (5) which we 
may write as follows (using TF in place of T to indicate that we mean 
the absolute temperature of the freezing point of the solution): 

0 /> /3r F ) p = LJvT9. (92) 
In this equation L 3 is the molecular heat of sublimation of the pure 

solid solvent under the pressure P to form saturated vapor at the pres­
sure p. dp is expressed by the equation 

dp = {ipll^^TpbNJpdN^ + (*p/*NA),4NA (93) 
Let us integrate equation (92) for aqueous solutions. Assuming the 

perfect gas law for saturated water vapor below o°, equation (92) may 
be written: 

dlnp = (LsIR)dTIT*. (94) 
Owing to the slight difference between the heat capacities of ice and its 

vapor, L s will have such a small temperature coefficient that it may be 
regarded as constant without much error, even for large values of the 
freezing point lowering, AtF. Integrating equation (94) with this assump­
tion we obtain 

lnpojp=(LJRT0)teF/T. (95) 

In this equation p is the vapor pressure of the solution at the absolute 
temperature of its freezing point T. 

Q. Summary and Conclusion. 
i. A simplification of the cyclical process method of Carnot has been 

described, which reduces the cycle of necessary operations to a single 
step and allows the desired thermodynamic equation to be written down 
"by inspection." Not only does this result in an increased clearness 
and certainty as to the exact significance of the quantities appearing 
in the equation, but it also insures an entirely rigorous result because 
it is impossible to introduce into the process any assumption except the 
two laws of thermodynamics. 

2. The use of this simplified process (embodied in what has been called 
the "Perfect Thermodynamic Engine") as the basis for the construction 
of a simple but entirely rigorous system of thermodynamic chemistry, 
is illustrated by applying it to the derivation of a number of fundamental 
relations. 

3. The modified process possesses, to a higher degree, all of the advan­
tages of the ordinary cyclical process with none of its disadvantages. 
The system of equations which it yields possesses all of the rigor of any 
of the analytic systems of thermodynamics with none of their abstruse 
conceptions and intricate, involved and long drawn-out derivations. 
By means of the perfect thermodynamic engine one can pass in a 
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single step from the Second Law of thermodynamics directly to the differ­
ential equation of the desired relation. 

4. In connection with the application of the engine to the subject 
of chemical equilibrium, the following points have been brought out: 

(a) Contrary to the statement of T. B. Robertson, the Mass Action 
Law is not an expression of the condition for equilibrium in a system 
whose equation of state is p(v — d) = RT. 

(b) The derivation of the Law of the Constancy of the Solubility Prod­
uct for a solute which dissociates in solution does not involve any assump­
tion regarding the nature of the law which regulates the equilibrium 
between the undissociated molecules and their products of dissociation. 
Consequently the theoretical basis for the Solubility Product Law in the 
case of strong electrolytes is not destroyed by the fact that they do not 
obey the Mass Action Law, as inferred by Stieglitz. 

5. I t is shown that many of our equations which contain the van't 
Hoff i, involve an unnecessary number of assumptions and that each 
equation can be split up into two simpler equations, one involving only 
the ions, the other only the unionized molecules. The advantage of 
so doing is illustrated by a consideration of the experimental data of 
Noyes and Sammet on the solubility of orthonitrobenzoic acid. 

UEBANA. ILLINOIS, January 15, 1910. 
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I t has previously been shown1 that the alkali metals exist, in liquid 
mercurial solution, in the form of compounds of the general formula 
MeHgn, containing only one atom of the amalgamated metal to the 
molecule. It has also been shown that a mixed solution, containing the 
chlorides of sodium and potassium, reacts readily with either sodium or 
potassium amalgam, with the rapid establishment of an equilibrium. 
The same has been found to be the case with sodium and rubidium, and 
sodium and caesium amalgams, when treated with the corresponding 
mixed solutions.2 

The present paper is the outcome of a more detailed study of the first 
1 Ueber die relative Bestandigkeit bzw. die !Constitution der verdiinnten Amalgame 

der Alkali-bzw. Erdalkalimetalle. G. McP. Smith, Z. anorg. Chem., 58, 381 (1908). 
* hoc. cit. 


